REPORT OF AIR POLLUTION SOURCE TESTING OF AN ETHYLENE OXIDE EMISSION-CONTROL SYSTEM OPERATED BY STERIGENICS, INC. IN ONTARIO, CALIFORNIA ON OCTOBER 13, 2015 # Submitted to: # SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive Diamond Bar, California 91765-4182 Submitted by: STERIGENICS, INC. 687 South Wanamaker Avenue Ontario, California 91761 **SCAQMD Facility ID 126060** Prepared by: ECSI, INC. PO Box 848 San Clemente, California 92674-0848 November 8, 2015 ECSi # **CONTACT SUMMARY** CLIENT FACILITY Ms. Laura Hartman EHS Manager STERIGENICS, INC. 2015 Spring Road, Suite 650 Oak Brook, Illinois 60523 Phone: (630)928-1724 FAX: (630)928-1701 email: LHartman@sterigenics.com SCAQMD Permit Number F96410 (Catalytic Oxidizer) ### **TEST DATE** Tuesday, October 13, 2015 ### REGULATORY AGENCY Mr. Yoong Jackson Air Quality Engineer II SCAQMD 21865 East Copley Drive Diamond Bar, California 91765-4182 Phone: (909)396-3125 FAX: (909)396-3341 email: <u>JYoong@aqmd.gov</u> ### **TESTING CONTRACTOR** Daniel P. Kremer Project Manager ECSi, Inc. PO Box 848 San Clemente, California 92674-0848 Phone: (949)400-9145 FAX: (949)281-2169 email: <u>dankremer@ecsi1.com</u> # FACILITY Mr. Michael Kolesar General Manager STERIGENICS, INC. 687 South Wanamaker Avenue Ontario, California 91761 Phone: (909)390-2113 FAX: (909)390-2124 email: MKolesar@sterigenics.com # **TABLE OF CONTENTS** | | | | PAGE NO | |------|--|---|---| | CON | TACT SUMMARY | | i | | TABI | E OF CONTENTS | | ii | | LIST | OF TABLES | | iii | | LIST | OF APPENDICES | | iv | | 1.0 | INTRODUCTION | I | 1 | | 2.0 | EQUIPMENT | | 2 | | 3.0 | TESTING | | 3 | | 4.0 | RULE/COMPLIA | NCE REQUIREMENTS | 4 | | 5.0 | TEST METHOD | REFERENCE | 5 | | | 5.2 Volumetr
5.3 EtO Mass
5.4 Sample T
5.5 GC Inject
5.6 GC Cond
5.7 Calibratio
5.8 Sampling | ion
itions
n Standards
Duration
fficiency/Mass-Emissions Calculations | 5
5
6
6
7
7
8
8
8 | | 6.0 | TEST SCENARI | 0 | 10 | | 7.0 | QA/QC | | 11 | | | | ting Quality Assurance
n Procedures | 11
11 | | 8.0 | TEST RESULTS | | 12 | | TABI | .ES | | 13 | | APPI | ENDICES | | 17 | # **LIST OF TABLES** | <u>TABLE</u> | <u>DESCRIPTION</u> | PAGE NO. | |--------------|--|----------| | 1 | Ethylene Oxide Control Efficiency - Backvent | 14 | | 2 | Ethylene Oxide Control Efficiency - Aeration | 15 | | 3 | Ethylene Oxide Leak Testing | 16 | # **LIST OF APPENDICES** | <u>APPENDIX</u> | <u>DESCRIPTION</u> | PAGE NO. | |-----------------|---------------------------------------|----------| | Α | Calibration Data | A-1 | | В | Backvent Chromatograms | B-1 | | С | Aeration Chromatograms | C-1 | | D | Field Data and Calculation Worksheets | D-1 | | F | Gas Certifications | F-1 | # 1.0 INTRODUCTION On Tuesday, October 13, 2015, ECSi, Inc. performed annual air pollution source testing and semi-annual leak testing of an ethylene oxide (EtO) sterilization and emission-control system operated by Sterigenics, Inc. in Ontario, California. The control device tested included one Donaldson Abator catalytic oxidizer, which is currently used to control emissions from eight commercial ethylene oxide sterilizer backvents, and one aeration room. The purpose of the testing program was to evaluate continued compliance with South Coast Air Quality Management District (SCAQMD) Rule 1405, the conditions established in the permit (F96410) granted to Sterigenics, Inc. by the SCAQMD, and with the work practice provisions in 40 CFR 63.363(b)(4)(i). # 2.0 EQUIPMENT The EtO gas-sterilization system is comprised of eight commercial sterilizers, all discharging through liquidring vacuum pumps to an existing packed-tower acid scrubber emission control device. The sterilization chamber backvents for all chambers discharge to the aeration room, which discharges to a Donaldson EtO Abator catalytic oxidizer emission-control device. The gas-sterilization and emission-control equipment consists of the following: - Six identical Trumbo/Xytel Gas Sterilizers, each comprised of a heated 2460 cubic foot interior volume sterilization chamber, a recirculating vacuum pump chamber evacuation system, and a backvent valve - Two identical Trumbo/Xytel Gas Sterilizers, each comprised of a heated 5300 cubic foot interior volume sterilization chamber, a recirculating vacuum pump chamber evacuation system, a backvent valve, and a fugitive emissions exhaust hood - One aeration room, comprised of a heated aeration chamber and a chamber exhaust/vent system. Sterilizer vacuum pump emissions are controlled by: • One Ceilcote packed tower chemical scrubber, Model SPT-48-168, 4'-0" diameter and 23'-4" high, equipped with a 14' deep bed of No. 1 Tellerette packing, a 5000 gallon reaction tank with two 10 hp/ 151 gpm recirculating pumps (one standby), and a 3 hp/2000 cfm exhaust fan. Sterilizer backvent and aeration emissions are controlled by: • One Donaldson EtO Abator System, 25,000 SCFM, equipped with a prefilter, a gas-fired heater, an exhaust gas heat exchanger, a reactive catalyst bed, and an exhaust blower. # 3.0 TESTING EtO source testing was conducted in accordance with the procedures outlined in CARB Method 431 and USEPA CFR40, Part 63.365. EtO emissions monitoring was conducted simultaneously at the inlet and outlet of the Abator during the entire backvent duration of one of the eight sterilizers, and during three one-hour time intervals of the aeration process. During backvent/aeration testing, EtO emissions at the inlet and the outlet of the catalytic oxidizer were determined using direct source sample injection into the gas chromatograph (GC). All backvent and aeration testing was performed using freshly sterilized product. # 4.0 RULE/COMPLIANCE REQUIREMENTS The EtO gas-sterilization system at Sterigenics, Inc. was tested to evaluate compliance with the conditions specified in the SCAQMD Permit, and with the requirements outlined in SCAQMD Rule 1405. The current testing was performed to demonstrate continued compliance with the following requirements: - The backvent valve discharge stream must be vented to control equipment with an EtO emissionreduction efficiency of at least 99.0% by weight; - The aeration discharge stream must be vented to control equipment with an EtO emission-reduction efficiency of at least 99.0% by weight; Testing is required to demonstrate compliance with these requirements. Source testing of the emission-control device is required initially, and is required annually thereafter. # 5.0 TEST METHOD REFERENCE # 5.1 INTRODUCTION EtO source testing was conducted in accordance with the procedures outlined in CARB Method 431 and USEPA CFR40, Part 63.365. EtO emissions monitoring was conducted simultaneously at the inlet and outlet of the Abator during the entire backvent duration of one of the eight sterilizers, and during three one-hour time intervals of the aeration process. During backvent/aeration testing, EtO emissions at the inlet and the outlet of the catalytic oxidizer were determined using direct source sample injection into the gas chromatograph (GC). All backvent and aeration testing was performed using freshly sterilized product. Operation and documentation of process conditions were performed by personnel from Sterigenics, Inc. using existing monitoring instruments installed by the manufacturer of the equipment to be tested. In accordance with SCAQMD requirements, and the procedures established in USEPA CFR40, Part 63, Subpart O, catalyst bed operating temperature was recorded, and is presented in Tables 1 and 2. ### 5.2 VOLUMETRIC FLOW MEASUREMENT Exhaust gas flow at the outlet of the Abator was determined by EPA Method 2C using a standard pitot tube and an inclined-oil manometer. Sampling ports were installed in accordance with EPA Method 1, and are located far enough from any flow disturbances to permit accurate flow measurement. Temperature measurements were obtained from a type K thermocouple and thermometer attached to the sampling probe. Exhaust gas composition was assumed to be air and small amounts of water vapor. Water vapor was negligible, at about 3 percent. ### 5.3 CONTROL EFFICIENCY AND MASS EMISSIONS MEASUREMENT During backvent and aeration testing, EtO emissions at the inlet and outlet of the catalytic oxidizer were determined using direct source sample injection into the GC. The mass of EtO emitted to the inlet and from the outlet were determined using the equation shown below in Section 5.9. Mass-mass control-efficiency of EtO during the backvent and aeration phases was calculated by comparing the mass of EtO vented to the system inlet to the mass of EtO vented from the system outlet. During the backvent and aeration phases, vented gas was analyzed by an SRI, Model 8610, portable gas chromatograph (GC), equipped with the following: dual, heated sample loops and injectors; dual columns; and dual detectors. A flame ionization detector (FID) was used to quantify inlet EtO emissions, and a photoionization detector (PID) was used to quantify low-level EtO emissions at the emission-control device outlet. ### 5.4 SAMPLE TRANSPORT Source gas was pumped to the GC at approximately 500-1000 cubic centimeters per minute (cc/min) from the sampling ports through two lengths of Teflon[®] sample line, each with a nominal volume of approximately 75 cubic centimeters (cc) and an outer diameter of 0.25 inch. At the inlet of the catalytic oxidizer, the sampling port was located in the common backvent/aeration discharge duct, upstream of the oxidizer. At the outlet of the catalytic oxidizer, sampling ports were located in the exhaust stack downstream of the catalyst bed. # 5.5 GC INJECTION Source-gas samples were injected into
the GC which was equipped with two heated sampling loops, each containing a volume of approximately 2cc and maintained at 100 degrees Celsius (C). Injections occurred at approximately one-minute intervals during backvent testing, and at approximately five-minute intervals during aeration testing. Helium was the carrier gas for both the FID and PID. ### 5.6 GC CONDITIONS The packed columns for the GC were operated at 80 degrees C. The columns were stainless steel, 6 feet long, 0.125 inch outer diameter, packed with 1 percent SP-1000 on 60/80 mesh Carbopack B. During the analysis, the FID was operated at 250 degrees C. The support gases for the FID were hydrogen (99.995% pure) and air (99.9999% pure). Any unused sample gas was vented from the GC system back to the inlet of the control device being tested. # 5.7 CALIBRATION STANDARDS The FID was calibrated for mid-range part-per-million-by-volume (ppmv) level analysis using gas proportions similar to the following: - 1) 100 ppmv EtO, balance nitrogen - 2) 50 ppmv EtO, balance nitrogen (audit gas) - 3) 10 ppmv EtO, balance nitrogen - 4) 1 ppmv EtO, balance nitrogen The PID was calibrated for low-range ppmv level analysis using gas proportions similar to the following: - 1) 100 ppmv EtO, balance nitrogen - 2) 50 ppmv EtO, balance nitrogen (audit gas) - 3) 10 ppmv EtO, balance nitrogen - 4) 1 ppmv EtO, balance nitrogen Each of these calibration standards was in a separate, certified manufacturer's cylinder. Copies of the calibration gas laboratory certificates are attached as Appendix E. ### 5.8 SAMPLING DURATION Sampling was performed during the entire backvent duration of one of the eight sterilizers, and during three one hour time intervals of the aeration process. Backvent testing was performed with freshly sterilized product in the sterilization chamber, upon initial opening of the backvent valve at the conclusion of the sterilizer vacuum vent phase. All aeration testing was performed with freshly sterilized product in the aeration rooms. ### 5.9 CONTROL-EFFICIENCY/MASS-EMISSIONS CALCULATIONS Mass emissions of EtO during the backvent and aeration phases were calculated using the following equation: MassRate = (VolFlow)(MolWt)(ppmv EtO/10⁶)/(MolVol) Where: MassRate = EtO mass flow rate, pounds per minute VolFlow = Corrected volumetric flow rate, standard cubic feet per minute at 68 degrees F MolWt = 44.05 pounds EtO per pound mole ppmv EtO = EtO concentration, parts per million by volume 10⁶ = Conversion factor, ppmv per "cubic foot per cubic foot" MolVol = 385.32 cubic feet per pound mole at one atmosphere and 68 degrees F Mass-mass control efficiency of EtO was calculated for the backvent/aeration. Results of the control-efficiency testing are presented in Section 8.0 and Tables 1 and 2. ## 5.11 LEAK TESTING Testing for EtO leaks was conducted by CARB Method 21 in accordance with SCAQMD Rule 1405. Testing was conducted during the exposure and chamber evacuation phases of the sterilization and exhaust cycles of the sterilizer. These conditions represent maximum sterilant gas mass flow through the system. EtO leak testing was performed using a Bacharach EO Leakator, Part Number 19-7057, Gas Leak Detector, equipped with a metal-oxide semi-conductor sensor, an audible signal, and a visual display. The lower detection limit of the instrument is less than the leak definition specified for EtO in SCAQMD Rule 1405. This leak definition is 10 ppm EtO for sterilant gas composed of 100 percent EtO. EtO concentration was measured one centimeter from the surface of all accessible components of the sterilizer and emission-control device that are potential sources of EtO leakage. Each component found to be leaking was identified and tagged. The date and the results of the EtO measurement for each leaking component were entered on that component's tag. The leak test data is summarized in Section 8.0 and in Table 3. # **6.0 TEST SCENARIO** The emission-control device was tested under conditions of the maximum EtO mass flow to the emission-control device under normal operating conditions. The maximum EtO mass flow to the emission-control device was achieved by testing the sterilizer through its entire backvent phase and through three one-hour intervals of the 24-hour/day aeration process, with freshly sterilized product in aeration. ## 7.0 QA/QC ### 7.1 FIELD TESTING QUALITY ASSURANCE At the beginning of the test, the sampling system was leak checked at a vacuum of 15 inches of mercury. The sampling system was considered leak free when the flow indicated by the rotameters fell to zero. At the beginning of the test, a system blank was analyzed to ensure that the sampling system was free of EtO. Ambient air was introduced at the end of the heated sampling line and drawn through the sampling system line to the GC for analysis. The resulting chromatogram also provided a background level for non-EtO components (i.e. ambient air, carbon dioxide, water vapor) which are present in the source gas stream due to the ambient dilution air which is drawn into the emission-control device, and due to the destruction of EtO by the emission-control device which produces carbon dioxide and water vapor. This chromatogram, designated AMB, is included with the calibration data in Appendix A. ### 7.2 CALIBRATION PROCEDURES The GC system was calibrated at the beginning and conclusion of each day's testing. Using the Peaksimple II analytical software, a point-to-point calibration curve was constructed for each detector. A gas cylinder of similar composition as the calibration gases, but certified by a separate supplier, was used to verify calibration gas composition and GC performance. All calibration gases and support gases used were of the highest purity and quality available. A copy of the laboratory certification for each calibration gas is attached as Appendix E. ### **8.0 TEST RESULTS** The Donaldson EtO Abator demonstrated an EtO control efficiency of 99.964 percent for the control of backvent emissions, and 99.964 percent for the control of aeration emissions. SCAQMD Rule 1405 specifies that EtO emission-control devices, at gas sterilization facilities with EtO usage in the range of Sterigenics, Inc., must have an EtO control efficiency of 99.0 percent or more during the aeration and backvent phases. The emission-control device met this requirement. The entire gas sterilization and emission control system was also found to be leak free. The test results are summarized in Table 1, 2 and 3. Chromatograms and chromatographic supporting data are attached as Appendices A through C. Copies of field data and calculation worksheets are attached as Appendix D. # **TABLES** # TABLE 1 ETHYLENE OXIDE CONTROL EFFICIENCY - BACKVENT OF AN ETHYLENE OXIDE EMISSION CONTROL DEVICE OPERATED BY STERIGENICS, INC. IN ONTARIO, CALIFORNIA ON OCTOBER 13, 2015 | CYCLE
PHASE | INJECTION
<u>TIME</u> | INLET ETO CONC. (PPM)(1) | OUTLET ETO CONC. (PPM)(2) | ETO CONTROL
EFFICIENCY | |----------------|--------------------------|--------------------------|---------------------------|---------------------------| | Backvent(3) | 1502 | 19.6 | 0.01 | 99.9490 | | Backvent | 1503 | 20.9 | 0.01 | 99.9522 | | Backvent | 1505 | 23.7 | 0.01 | 99.9578 | | Backvent | 1506 | 23.4 | 0.01 | 99.9573 | | Backvent | 1507 | 29.1 | 0.01 | 99.9656 | | Backvent | 1508 | 36.2 | 0.01 | 99.9724 | | Backvent | 1509 | 34.0 | 0.01 | 99.9706 | | Backvent | 1511 | 33.3 | 0.01 | 99.9700 | | Backvent | 1512 | 32.2 | 0.01 | 99.9689 | | Backvent | 1513 | 31.4 | 0.01 | 99.9682 | | Backvent | 1514 | 32.2 | 0.01 | 99.9689 | | Backvent | 1515 | 31.3 | 0.01 | 99.9681 | | Backvent | 1516 | <u>30.9</u> | <u>0.01</u> | <u>99.9676</u> | | TIME-WEIGI | HTED AVERAGE: | 29.09 | 0.0100 | 99.9643 | SCAQMD REQUIRED CONTROL EFFICIENCY: 99.0 ## Notes: - (1) PPM = parts per million by volume - (2) 0.01 ppm is the quantification limit for the detector used at the outlet. - (3) The backvent phase test run started at 15:01, ended at 15:16. - (4) The average catalyst bed temperature recorded during the test run was 311.2 degrees F. # TABLE 2 ETHYLENE OXIDE CONTROL EFFICIENCY - AERATION OF AN ETHYLENE OXIDE EMISSION CONTROL DEVICE OPERATED BY STERIGENICS, INC. IN ONTARIO, CALIFORNIA ON OCTOBER 13, 2015 | RUN
<u>NUMBER</u> | INJECTION
<u>TIME</u> | INLET ETO CONC. (PPM)(1) | OUTLET ETO CONC. (PPM)(2) | ETO CONTROL
EFFICIENCY | |----------------------|--------------------------|--------------------------|---------------------------|---------------------------| | 1(3) | 1520 | 29.5 | 0.01 | 99.9661 | | 1 | 1525 | 28.8 | 0.01 | 99.9653 | | 1 | 1530 | 28.2 | 0.01 | 99.9645 | | 1 | 1535 | 27.2 | 0.01 | 99.9632 | | 1 | 1540 | 26.6 | 0.01 | 99.9624 | | 1 | 1545 | 25.9 | 0.01 | 99.9614 | | 1 | 1550 | 24.9 | 0.01 | 99.9598 | | 1 | 1555 | 25.0 | 0.01 | 99.9600 | | 1 | 1600 | 25.3 | 0.01 | 99.9605 | | 1 | 1605 | 25.1 | 0.01 | 99.9602 | | 1 | 1610 | 24.3 | 0.01 | 99.9588 | | 1 | 1615 | 24.4 | 0.01 | 99.9590 | | 2(4) | 1620 | 24.3 | 0.01 | 99.9588 | | 2 | 1625 | 23.9 | 0.01 | 99.9582 | | 2 | 1630 | 24.4 | 0.01 | 99.9590 | | 2
2
2 | 1635 | 24.2 | 0.01 | 99.9587 | | | 1640 | 23.7 | 0.01 | 99.9578 | | 2 | 1645 | 24.0 | 0.01 | 99.9583 | | 2 | 1650 | 23.6 | 0.01 | 99.9576 | | 2 | 1655 | 23.1 | 0.01 | 99.9567 | | 2 | 1700 | 23.1 | 0.01 | 99.9567 | | 2 | 1705 | 25.2 | 0.01 | 99.9603 | | 2 | 1710 | 26.5 | 0.01 | 99.9623 | | 2 | 1715 | 24.5 | 0.01 | 99.9592 | | 3(5) | 1720 | 24.2 | 0.01 | 99.9587 | | 3 | 1725 | 23.5 | 0.01 | 99.9574 | | 3
3 | 1730 | 23.9 | 0.01 | 99.9582 | | | 1735 | 23.8 | 0.01 | 99.9580 | | 3 | 1740 | 23.9 | 0.01 | 99.9582 | | 3 | 1745 | 56.2 | 0.01 | 99.9822 | | 3 | 1750 | 52.8 | 0.01 | 99.9811 | | 3 | 1755 | 49.5 | 0.01 | 99.9798 | | 3 | 1800 | 48.5 | 0.01 | 99.9794 | | 3 | 1805 | 49.2 | 0.01 | 99.9797 | | 3 | 1810 | 48.0 | 0.01 | 99.9792 | | 3 | 1815 | <u>47.4</u> | <u>0.01</u> | <u>99.9789</u> | | TIME-W | EIGHTED AVERAGE: | 29.91 | 0.0100 | 99.9638 |
SCAQMD REQUIRED CONTROL EFFICIENCY: ## Notes: - (1) PPM = parts per million by volume - (2) 0.01 ppm is the quantification limit for the detector used at the outlet. - (3) Aeration Phase Test Run #1 started at 15:17, ended at 16:17. - (4) Aeration Phase Test Run #2 started at 16:17, ended at 17:17. - (5) Aeration Phase Test Run #3 started at 17:17, ended at 18:17. - (4) The average catalyst bed temperature recorded during the test was 311.1 degrees F. 99.0% # TABLE 3 ETHYLENE OXIDE LEAK TESTING OF A GAS STERILIZATION SYSTEM (8 STERILIZERS) OPERATED BY STERIGENICS, INC. IN ONTARIO, CALIFORNIA ON OCTOBER 13, 2015 | COMPONENT GROUP TESTED | LEAKING COMPONENTS FOUND | CONCENTRATION | |-------------------------------------|--------------------------|---------------| | Supply Tanks / Load Stations | None | <1.0 ppm (1) | | Sterilizer Inlets / Inbleed Valves | None | <1.0 ppm | | Door Seals | None | <1.0 ppm | | Sterilizer Outlets / Chamber Drains | None | <1.0 ppm | | Vacuum Pumps | None | <1.0 ppm | | Emission Control Device Inlet | None | <1.0 ppm | Notes: (1) - PPM = parts per million by volume # **APPENDICES** # **APPENDIX A** **Calibration Data** |
 -
 -
 | Dead Vol / Air
Ambient H2O
Ethylene Oxide | 0.350
0.500 | End
0.350
0.500
0.600 | Calibration C:\peak359\1Ster | | Units
.ppm | |------------------|---|-------------------------|--------------------------------|------------------------------|---------------------------|---------------| | }
}
5 | • | 0.500
0.600
0.800 | 0.600
0.800
1.000 | C:\peak359\1Stel | 0.00015
0.000
0.000 | .ppm | <u>'</u> Avg slope of curve: 0.22 Y-axis intercept: 0.00 Linearity: 1.00 Number of levels: 6 SD/rel SD of CF's: 0.1/49.0 Y=0.2190X r2: 1.0000 Last calibrated: Tue Oct 13 18:40:30 2015 | LV. | i. Area/ht. | Amount | CF | Current | Previou | s #1Previous #2 | |-----|-------------|-----------|-------|----------|---------|-----------------| | 1 | 0.000 | 0.000 | 0.000 | 0.000 | N/A | N/A | | 2 | 0.241 | 1.100 | 0.219 | 0.241 | N/A | N/A | | 3 | 2.210 | 10.100 | 0.219 | 2.210 | N/A | N/A | | 4 | 21.900 | 100.000 | 0.219 | 21.900 | N/A | N/A | | 5 | 219.000 | 1000.000 | 0.219 | 219.000 | N/A | N/A | | 6 | 2210.000 | 10080.000 | 0.219 | 2210.000 | N/A | N/A | | | | | | | | | | ² eak | Name | Start | End | Calibration | Int.Std | Units | |------------------|----------------|-------|-------|----------------|-----------|-------| | Į. | Dead Vol / Air | 0.000 | 0.350 | | 0.000 | | | 2 | Ambient H2O | 0.350 | 0.500 | | 0.000 | | | 3 | Ethylene Oxide | 0.500 | 0.600 | C:\peak359\2St | er0.00015 | mqq.c | | 1 | | 0.600 | 0.800 | • | 0.000 | | | 5 | CO2 | 0.800 | 1.000 | | 0.000 | | · · Avg slope of curve: 1.17 Y-axis intercept: -0.00 Y-axis intercept: -0.00 Linearity: 1.00 Number of levels: 4 SD/rel SD of CF's: 0.6/66.7 Y=1.1736X r2: 1.0000 Last calibrated: Tue Oct 13 18:39:40 2015 | Lν | l. Area/ht | Amount | CF | Current | Previou | s #1Previous #2 | |----|------------|---------|-------|---------|---------|-----------------| | 1 | 0.000 | 0.000 | 0.000 | 0.000 | N/A | N/A | | 2 | 1.290 | 1.100 | 1.173 | 1.290 | N/A | N/A | | 3 | 11.900 | 10.100 | 1.178 | 11.900 | N/A | N/A | | 4 | 117.000 | 100.000 | 1.170 | 117.000 | N/A | N/A | Analysis date: 10/13/2015 13:26:28 Method: Direct Injection Analysis date: 10/13/2015 13:26:28 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto1-100.cpt Data file: 2SterOnt2015-Amb.CHR (c:\peak359) Data file: 1SterOnt2015-Amb.CHR (c:\peak359) Sample: Ambient Background Sample: Ambient Background Operator: D. Kremer Operator: D. Kremer 32,000 8,000 -0.800 Dead Vol ! Air 1.5430/0.233 0.0000/ Retention Area External Units Component External Units Component Retention Area Dead Vol / Air 0.100 11.7900 0.0000 0.0000 0.233 1.5430 Dead Vol / Air Ambient H2O 0.416 91.6960 103.4860 0.0000 0.0000 Client: Sterigenics Ontario Client ID: PreCal LAU HOISIE, LUCK Client ID: PreCal Client: Sterigenics Ontario 1.5430 0.0000 Client: Sterigenics Ontario Client ID: PreCal Analysis date: 10/13/2015 13:34:49 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-Audit.CHR (c:\peak359) Sample: 48.8 ppm EtO std Operator: D. Kremer Column: 1% SP-1000, Carbopack B Client: Sterigenics Ontario Analysis date: 10/13/2015 13:34:49 Method: Direct Injection Description: CHANNEL 2 - PID Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Client ID: PreCal Data file: 2SterOnt2015-Audit.CHR (c:\peak359) 61.1770 48.8093 Sample: 48.8 ppm EtO std Operator: D. Kremer Column: 1% SP-1000, Carbopack B Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto1-100.cpt Data file: 2SterOnt2015-PAudit.CHR (c:\peak359) Data file: 1SterOnt2015-PAudit.CHR (c:\peak359) Sample: 48.8 ppm EtO std Sample: 48.8 ppm EtO std Operator: D. Kremer Operator: D. Kremer -1.600 -6.400 3.7175/0.116 1.1390/0,450 48.7285/ppm 10.6730/0.533 0.1610/0.766 0.1880/0.816 Acataldehyde CO2 External Units Component Retention External Units Component Retention Area Агеа Dead Vol / Air Ambient H2O Acetaldehyde CO2 Ethylene Oxide 0.116 0.450 0.566 0.766 0.816 Client: Sterigenics Ontario 0.533 Ethylene Oxide 10.6730 10.6730 48,7285 48.7285 ppm Anatysis date: 10/13/2015 18:42:24 Method: Direct Injection Description: CHANNEL 1 - FID Client ID: PostCal Client: Sterigenics Ontario 64,000 1.0000/ 0.0000/ 9,3078/ 10000.0 0.0000 0.0000 0.0000 0.0000 49.3078 49.3078 ppm 3.7175 1.1390 57.8700 0.1610 0.1880 63.0755 Analysis date: 10/13/2015 18:42:24 Method: Direct Injection Description: CHANNEL 2 - PID Client ID: PostCal # APPENDIX B **Backvent Chromatograms** Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:02:37 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B01.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:02:37 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp, prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B01.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:03:53 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B02.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:03:53 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B02.CHR (c:\peak359) LOU HORRO, LOUI Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:05:02 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B03.CHR (c:\peak359) Sample: Abator Injet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:05:02 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B03.CHR (c:\peak359) Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B04.CHR (c:\peak359) Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B04.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer 32.000 1.4630/0.233 79,8600/0,416 23.3872/ppm Component Ambient H2O External Units 23.3872 ppm 0.0000 23.3872 Lab Hallic, Loci Client ID: Backvent Analysis date: 10/13/2015 15:06:19 Method: Direct Injection Description: CHANNÉL 2 - PID Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B Carrier: HELIUM Retention 0.416 Area 79.8600 79.8600 External Units 0.0000 0.0000 Lab Hallie. ECOI Component Dead Vol / Air Ethylene Oxide Retention 0.233 0.533 Area 1.4630 5.1225 6.5855 Client ID: Backvent Analysis date: 10/13/2015 15:06:19 Method: Direct Injection Client: Sterigenics Ontario Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:07:36 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B05.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:07:36 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B05.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:08:44 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B06.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:08:44 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file:
2SterOnt2015-B06.CHR (c:\peak359) Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B07.CHR (c:\peak359) Components: eto1-100.cpt Data file: 1SterOnt2015-B07.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer 32,000 0.800 F-100000/Units 1.4675/0.233 0.0000/ 0.0000/ 7.4420/0.516 33.9771/ppm Component Retention Area External Units Component Retention External Units Area Ambient H2O Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.400 78.6025 78,6025 0.0000 0.0000 Client ID: Backvent Analysis date: 10/13/2015 15:09:56 Method: Direct Injection Carrier: HELIUM Description: CHANNEL 2 - PID Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.233 0.516 Dead Vol / Air Ethylene Oxide 1.4675 7.4420 8.9095 0.0000 33.9771 33.9771 ppm Client ID: Backvent Carrier: HELIUM Temp. prog: eto-100.tem Analysis date: 10/13/2015 15:09:56 Method: Direct Injection Description: CHANNEL 1 - FID Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B08.CHR (c:\peak359) Sample: Abator Outlet Operator: D. Kremer Data file: 1SterOnt2015-B08.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer -0.800 8.000 32,000 0.0000/Units Dead Vol / Air 1,4730/0,233 0.00007 Ambleot H2O 77.6870/0,400 0.0000/ 33,3128/ppm Component Ambient H2O Retention 0.400 Area 77.6870 77.6870 External Units 0.0000 0.0000 External Units 33.3128 ppm 0.0000 33.3128 Lab Harrie, Ecol Client ID: Backvent Analysis date: 10/13/2015 15:11:04 Method: Direct Injection Client: Sterigenics Ontario Lab Hallic, 1...Ool Component Dead Vol / Air Ethylene Oxide Retention 0.233 0.516 Area 1.4730 7.2965 8.7695 Client ID: Backvent Analysis date: 10/13/2015 15:11:04 Method: Direct Injection Client: Sterigenics Ontario Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B09.CHR (c:\peak359) Sample: Abator Outlet Data file: 1SterOnt2015-B09.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Operator: D. Kremer -0.806 32,000 8,000 -3.200 0.0000/Units 0.00007 77,3000/0,416 Ambient H2D la coper Ethylene Oxide > 7.0530/0.533 32,2011/ppm Component Retention Area External Units Component Retention Area External Units Dead Vol / Air 0.250 1.3675 0.0000 Ambient H2O 0.416 77.3000 0.0000 Client: Sterigenics Ontario 77.3000 0.0000 Client ID: Backvent Analysis date: 10/13/2015 15:12:10 Method: Direct Injection Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.533 7.0530 8.4205 32.2011 ppm 32.2011 Client ID: Backvent Analysis date: 10/13/2015 15:12:10 Method: Direct Injection Ethylene Oxide Description: CHANNEL 1 - FID Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:13:14 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B10.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:13:14 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B10.CHR (c:\peak359) Temp. prog: eto-100.tem Components: eto1-100.cpt Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B11.CHR (c:\peak359) Data file: 1SterOnt2015-B11.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer -0.800 -3.200 32.000 70.0000/Units 1.4240/0.250 Ambient H2O 74.8750/0.416 0.0000/ > 7.0490/0.533 32.1828/ppm Retention External Units Component Area Component Retention External Units Area 0.250 0.0000 Dead Vol / Air 1.4240 Ambient H2O 0.416 74.8750 0.0000 Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.533 7.0490 8.4730 32.1828 ppm 32.1828 Client ID: Backvent Carrier: HELIUM Ethylene Oxide Analysis date: 10/13/2015 15:14:20 Method: Direct Injection Description: CHANNEL 1 - FID Client: Sterigenics Ontario Analysis date: 10/13/2015 15:14:20 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B 74.8750 0.0000 Client ID: Backvent Carrier: HELIUM Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:15:29 Method: Direct Injection HOIHY. Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-B12.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Backvent Analysis date: 10/13/2015 15:15:29 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-B12.CHR (c:\peak359) Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto1-100.cpt Data file: 2SterOnt2015-B13.CHR (c:\peak359) Data file: 1SterOnt2015-B13.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer -0.800 8.000 -3.200 32,000 0.0000/Units 1,6310/0,233 0.00007 Ambient H2Q 77.7460/0.400 0.0000/ > 6.7675/0.516 . 30.8976/ppm External Units Component Retention Агеа Component Retention Area External Units 0.233 0.0000 0.400 0.0000 Dead Vol / Air 1.6310 Ambient H2O 77.7460 Client: Sterigenics Ontario Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B 77.7460 0.0000 Client ID: Backvent Carrier: HELIUM Analysis date: 10/13/2015 15:16:35 Method: Direct Injection Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.516 6.7675 8.3985 30.8976 30.8976 ppm Client ID: Backvent Carrier: HELIUM Temp. prog: eto-100.tem Ethylene Oxide Analysis date: 10/13/2015 15:16:35 Method: Direct Injection Description: CHANNEL 1 - FID ## **APPENDIX C** **Aeration Chromatograms** Analysis date: 10/13/2015 15:20:25 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A01.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:20:25 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto2-100.cpt Data file: 2SterOnt2015-1A01.CHR (c:\peak359) Analysis date: 10/13/2015 15:25:33 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A02.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:25:33 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A02.CHR (c:\peak359) Analysis date: 10/13/2015 15:30:14 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A03.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Ctient: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:30:14 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A03.CHR (c:\peak359) Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto1-100.cpt Data file: 2SterOnt2015-1A04.CHR (c:\peak359) Data file: 1SterOnt2015-1A04.CHR (c:\peak359) Sample: Abator Outlet Sample: Abator Inlet Operator: D. Kremer Operator: D. Kremer 32,000 -3.200 8.000 -0.800 External/Units 1035/0.100 0.00000/ Dead Vol / Air 0.0000/ 1.5030/0.233 Dead Vol / Air 0.00001 Ambient H2O 80 DR15/0 416 27_2086/ppm External Units Component Retention Area External Units Component Retention Area 0.0000 27.2086 27.2086 ppm 1.5030 5.9595 7.4625 Dead Vol / Air Ambient H2O Client: Sterigenics Ontario Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B 0.100 0.416 7.1035 80.0815 87.1850 0.0000 0.0000 0.0000 Client ID: Run#1Aer Carrier: HELIUM Analysis date: 10/13/2015 15:35:19 Method: Direct Injection Lau Hallie. Looi Client ID: Run#1Aer Carrier: HELIUM Dead Vol / Air Ethylene Oxide Analysis date: 10/13/2015 15:35:19 Method: Direct Injection Description: CHANNEL 1 - FID Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.233 0.533 Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:41:01 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A05.CHR (c:\peak359) Sample: Abator inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:41:01 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A05.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:45:05 Method: Direct Injection LOD HAILIC. Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A06.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:45:05 Method: Direct Injection Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A06.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:50:25 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A07.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:50:25 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A07.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:55:09 Analysis date: 10/13/2015 15:55:09 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A08.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 15:55:09 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A08.CHR (c:\peak359) Analysis date: 10/13/2015 16:00:10 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A09.CHR (c:\peak359) Sample: Abator inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 16:00:10 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A09.CHR (c:\peak359) Lav Hallie, LCC Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 16:05:16 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A10.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 16:05:16 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A10.CHR (c:\peak359) Analysis date: 10/13/2015 16:10:18 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A11.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 16:10:18 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A11.CHR (c:\peak359) Analysis date: 10/13/2015 16:15:17 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-1A12.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#1Aer Analysis date: 10/13/2015 16:15:17 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-1A12.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:20:44 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-2A01.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:20:44 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto2-100.cpt Data file: 2SterOnt2015-2A01.CHR (c:\peak359) Analysis date: 10/13/2015 16:25:53 Method: Direct Injection Analysis date: 10/13/2015 16:25:53 Method: Direct Injection Description: CHANNEL 2 - PID Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto1-100.cpt Components: eto2-100.cpt Data file: 2SterOnt2015-2A02.CHR (c:\peak359) Data file: 1SterOnt2015-2A02.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer 32,000 0.00007 Client: Sterigenics Ontario Client ID: Run#2Aer Client: Sterigenics Ontario Client ID: Run#2Aer | Dead Vol / Air | 1,2970/0,233 | | | | 0.0000/ | | 5 | | | - | | | ļ | ļ | |----------------------------------|----------------|------------------|----------|-------|-------------|-------------------------|------|---|----------------|-------------------|-------------------|-------|---|---------| | Ethylena Oxide | 5 2355/0.533 | | | | 23,9031/ррт | Ambient H2O | \ | | 80.2140/0.416 | | | | 1 | V0000.C | | | | | | | | | | | | | | | | | | Component | Retention | Area | External | Units | | Compo | nent | R | Retention | Area | External | Units | | | | Dead Vol / Air
Ethylene Oxide | 0.233
0.533 | 1.2970
5.2355 | | ppm | | Dead Vol /
Ambient H | | | 0.100
0.416 | 7.1470
80.2140 | 0.000.0
0.0000 | | | | | | | 6.5325 | 23.9031 | | | | | | | 87.3610 | 0.0000 | | | | Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:30:15 Method: Direct Injection Description: CHANNEL 1 - FID Lab Hairie, LVVI Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-2A03.CHR (c:\peak359) Sample: Abator inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:30:15 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-2A03.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:35:10 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-2A04.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:35:10 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-2A04.CHR (c:\peak359) Method: Direct Injection Method: Direct Injection Description: CHANNEL 2 - PID Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Column: 1% SP-1000, Carbopack B Carrier: HELJUM Carrier: HELIUM Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto1-100.cpt Components: eto2-100.cpt Data file: 1SterOnt2015-2A05.CHR (c:\peak359) Sample: Abator Inlet Data file: 2SterOnt2015-2A05.CHR (c:\peak359) Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer 32 000 -0.806 8.000 -3.200 Component 7.1170/0.066 0.0000 Dead Vot/Air 1.3270/0.233 0.0000/ Dead Vot / Alm Ambient H2O 80.4145/0.416 0.0000 23,7342/ppm Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:40:37 External Units Component Retention Area External Units Component Retention Area 0.233 0.0000 Dead Vol / Air 0.066 7.1170 0.0000 Dead Vol / Air 1.3270 0.0000 Ambient H2O 0.416 Ethylene Oxide 0.533 5.1985 23.7342 ppm 80.4145 0.0000 6.5255 23.7342 87.5315 Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:40:37 Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:45:12 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-2A06.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 16:45:12 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-2A06.CHR (c:\peak359) Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto1-100.cpt Data file: 2SterOnt2015-2A07.CHR (c:\peak359) Data file: 1SterOnt2015-2A07.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer 32,009 External/Units -3.200 -0.800 mal/Units Component Dead Vot / Air 7.1990/0.166 10.00007 1.3460/0.233 0.0000/ 0.0000/ Ambient H2O 80.8680/0.416 23.6178*lo*om 5,1730/0,533 Retention Агеа External Units Retention External Units Component Component Area Dead Vol / Air Ambient H2O Client: Sterigenics Ontario Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B 0.166 0.416 7.1990 80.8680 88.0670 0.0000 0.0000 0.0000 Client ID: Run#2Aer Carrier: HELIUM Analysis date: 10/13/2015 16:50:44 Method: Direct Injection Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.233 0.533 Dead Vol / Air Ethylene Oxide 0.0000 23.6178 23.6178 ppm 1.3460 5.1730 6,5190 Client ID: Run#2Aer Carrier: HEL!UM Temp. prog: eto-100.tem Analysis date: 10/13/2015 16:50:44 Method: Direct Injection Description: CHANNEL 1 - FID Analysis date: 10/13/2015 16:55:05 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-2A08.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#2Aer
Analysis date: 10/13/2015 16:55:05 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Components: eto2-100.cpt Data file: 2SterOnt2015-2A08.CHR (c:\peak359) Lav Hallic, Looi Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 17:00:32 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-2A09.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 17:00:32 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-2A09.CHR (c:\peak359) Components: eto1-100.cpt Components: eto2-100.cpt Data file: 2SterOnt2015-2A10.CHR (c:\peak359) Data file: 1SterOnt2015-2A10.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer 8.000 Component -3,200 32.000 -0.800 . Evternal/Linits .0010/0.150 0.0000/ Dead Vol / Air 0,00007 Dead Vol / Air Ambient H2O 79,4760/0,416 0.00001 > 5.5295/0.533 25.2454/opm External Units External Units Component Retention Area Retention Component Агеа Dead Vol / Air Ambient H2O Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.150 0.416 0.0000 0.0000 0.0000 7.0010 79.4760 86.4770 Client ID: Run#2Aer Carrier: HELIUM Temp. prog: eto-100.tem Analysis date: 10/13/2015 17:05:14 Method: Direct Injection Description: CHANNEL 2 - PID LOU HUHIO. Dead Vol / Air Ethylene Oxide Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.233 0.533 1.2600 5.5295 6.7895 25.2454 0.0000 25.2454 ppm Client ID: Run#2Aer Carrier: HELIUM Temp. prog: eto-100.tem Analysis date: 10/13/2015 17:05:14 Method: Direct Injection Description: CHANNEL 1 - FID Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto1-100.cpt Components: eto2-100.cpt Data file: 1SterOnt2015-2A11.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Data file: 2SterOnt2015-2A11.CHR (c:\peak359) Sample: Abator Outlet Operator: D. Kremer 32.000 8.000 -3.200 -0.800 Component 2980/0.116 1/2000.0 1,3570/0,233 0.0000/ Dead Vol / Air 1,0000.0 81.0360/0.400 Ambient H2O 26.5032/ppm External Units 26.5032 ppm 0.0000 26.5032 Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B Retention 0.116 0.400 Area 6.2980 81.0360 87.3340 Component Dead Vol / Air Ambient H2O External Units 0.0000 0.0000 0.0000 Client ID: Run#2Aer Analysis date: 10/13/2015 17:10:26 Carrier: HELIUM Method: Direct Injection Description: CHANNEL 2 - PID LUD HUHIU. Component Dead Vol / Air Ethylene Oxide Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B Retention 0.233 0.516 Area 1.3570 5.8050 7.1620 Client ID: Run#2Aer Carrier: HELIUM Analysis date: 10/13/2015 17:10:26 Method: Direct Injection Description: CHANNEL 1 - FID Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 17:15:14 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt COD HOMEO. LOO Data file: 1SterOnt2015-2A12.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#2Aer Analysis date: 10/13/2015 17:15:14 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-2A12.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:20:19 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-3A01.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:20:19 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A01.CHR (c:\peak359) Description: CHANNEL 2 - PID Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A02.CHR (c:\peak359) Components: eto1-100.cpt Data file: 1SterOnt2015-3A02.CHR (c:\peak359) Sample: Abator Outlet Sample: Abator Inlet Operator: D. Kremer Operator: D. Kremer -3.200 32,000 8.000 -0.800 10,7740/0.150 10000.0 Dead Vol / Air 0.0000/ 1.1700/0.233 Dead Vol / Air Ambient H2O 82.1690/0.416 23.5082/ppm External Units 23.5082 ppm 0.0000 23.5082 Client: Sterigenics Ontario Client ID: Run#3Aer Component Dead Vol / Air Ethylene Oxide Retention 0.233 0.533 Area 1.1700 5.1490 6.3190 Analysis date: 10/13/2015 17:25:03 Method: Direct Injection Client: Sterigenics Ontario Retention 0.150 0.416 Component Dead Vol / Air Ambient H2O Area 10.7740 82.1690 92.9430 External Units 0.0000 0.0000 0.0000 Client ID: Run#3Aer Analysis date: 10/13/2015 17:25:03 Method: Direct Injection Lab Hallie. Loci Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:30:17 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-3A03.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:30:17 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt LUD HUHIO, LOOK Data file: 2SterOnt2015-3A03.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:35:32 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-3A04.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:35:32 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A04.CHR (c:\peak359) Temp. prog: eto-100.tem Components: eto1-100.cpt Components: eto2-100.cpt Data file: 1SterOnt2015-3A05.CHR (c:\peak359) Data file: 2SterOnt2015-3A05.CHR (c:\peak359) Sample: Abator Outlet Sample: Abator Inlet Operator: D. Kremer Operator: D. Kremer 32,000 -0.800 8.000 -3.200 100000.0) 1.1640/0.233 0.0000/ Dead Vol / Air 81.1900/0.416 0.0000 Ambient H2O Component Dead Vol / Air Ambient H2O External Units 23.9420 ppm 0.0000 23.9420 Lav Hallic, LCOL Client ID: Run#3Aer Carrier: HELIUM Temp. prog: eto-100.tem Analysis date: 10/13/2015 17:40:10 Method: Direct Injection Client: Sterigenics Ontario Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Retention 0.100 0.416 Area 8.7420 81.1900 89.9320 External Units 0.0000 0.0000 0.0000 Lab hanse. ECS Component Dead Vol / Air Ethylene Oxide Client ID: Run#3Aer Analysis date: 10/13/2015 17:40:10 Method: Direct Injection Description: CHANNEL 1 - FID Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B Carrier: HELIUM Retention 0.233 0.533 Area 1.1640 5.2440 6.4080 Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:45:11 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Lab name: ECSI Data file: 1SterOnt2015-3A06.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:45:11 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Lau name. Ecoi Data file: 2SterOnt2015-3A06.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:51:14 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Lab Haine. ECS Data file: 1SterOnt2015-3A07.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:51:14 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A07.CHR (c:\peak359) Lab name: EUSI Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 17:55:08 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-3A08.CHR (c:\peak359) Operator: D. Kremer Sample: Abator Inlet Client: Sterigenics Ontario Client ID: Run#3Aer Lab Hame, LCO Analysis date: 10/13/2015 17:55:08 Method: Direct Injection Description: CHANNEL 2 - PID Cotumn: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A08.CHR (c:\peak359) LAD HAIRE. LCQ: Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 18:00:03 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-3A09.CHR (c:\peak359) Sample: Abator inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 18:00:03 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file:
2SterOnt2015-3A09.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 18:05:18 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt2015-3A10.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 18:05:18 Method: Direct Injection Description: CHANNEL 2 - PID Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A10.CHR (c:\peak359) Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 18:10:06 Method: Direct Injection Description: CHANNEL 1 - FID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto1-100.cpt Data file: 1SterOnt201 Lab Haine. ECSI Data file: 1SterOnt2015-3A11.CHR (c:\peak359) Sample: Abator Inlet Operator: D. Kremer Client: Sterigenics Ontario Client ID: Run#3Aer Analysis date: 10/13/2015 18:10:06 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A11.CHR (c:\peak359) Temp. prog: eto-100.tem Temp. prog: eto-100.tem Components: eto2-100.cpt Data file: 2SterOnt2015-3A12.CHR (c:\peak359) Components: eto1-100.cpt Data file: 1SterOnt2015-3A12.CHR (c:\peak359) Sample: Abator Inlet Sample: Abator Outlet Operator: D. Kremer Operator: D. Kremer 32.000 -1.600 16.000 7.1245/0.100 0.0000/ Dead Vol / Alc Ambient H2O 88.0730/0.416 יסממת מ 47.4319/ppm External Units Retention External Units Component Retention Агеа Component Area Dead Vol / Air Ambient H2O Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.233 0.516 Dead Vol / Air Ethylene Oxide 0.0000 47.4319 ppm 1.2020 10.3890 11.5910 47.4319 Client ID: Run#3Aer Carrier: HELIUM Analysis date: 10/13/2015 18:15:03 Method: Direct Injection Description: CHANNEL 1 - FID Client: Sterigenics Ontario Column: 1% SP-1000, Carbopack B 0.100 0.416 0.0000 0.0000 0.0000 7.1245 88.0730 95.1975 Client ID: Run#3Aer Carrier: HELIUM Analysis date: 10/13/2015 18:15:03 Method: Direct Injection Description: CHANNEL 2 - PID #### **APPENDIX D** **Field Data and Calculation Worksheets** ECSi, Inc. Ethylene Oxide Mass Emissions Data and Calculations #### Sterigenics, Inc. - Ontario, California 10-13-15 - Backvent Test Data | | | Stack | | Catalyst | | | | |---------------|-------------------|----------|---------|-------------|-----------------|-----------|---------| | <u>DeltaP</u> | SqRtDeltaP | Temp (F) | ppm EtO | <u>Temp</u> | mw = | 28.51 | | | | | | | | stack area = | 15.9 | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | press = | 28.95 | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | Tstd = | 528 | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | Pstd = | 29.92 | | | 0.14 | 0.3742 | 223 | 0.01 | 310 | Cp = | 0.99 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | Kp = | 85.49 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 223 | 0.01 | 310 | Velocity = | 28.8 | ft/sec | | 0.14 | 0.3742 | 223 | 0.01 | 310 | Flow = | 19922 | dscfm | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | MWeto = | 44.05 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | MolVol = | 385.32 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | ppmv/ft3 = | 1000000 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | | | | | | EtO Mass Flow = | 0.0000228 | lbs/min | | Average = | | | | | EtO Mass Flow = | 0.001366 | lbs/hr | | 0.14 | 0.3742 | 224.2 | 0.0100 | 311.2 | | | | = 684 degR # ECSi, Inc. Ethylene Oxide Mass Emissions Data and Calculations #### Sterigenics, Inc. - Ontario, California 10-13-15 - Aeration Test Data | | | Stack | | Catalyst | | | | |---------------|-------------------|----------|---------|-------------|-----------------|-----------|---------| | <u>DeltaP</u> | <u>SqRtDeltaP</u> | Temp (F) | ppm EtO | <u>Temp</u> | mw = | 28.51 | | | Run#1 | | | | | stack area = | 15.9 | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | press = | 28.95 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | Tstd = | 528 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | Pstd = | 29.92 | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | Cp = | 0.99 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | Kp = | 85.49 | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 226 | 0.01 | 313 | Velocity = | 28.8 | ft/sec | | 0.14 | 0.3742 | 224 | 0.01 | 311 | Flow = | 19924 | dscfm | | 0.14 | 0.3742 | 223 | 0.01 | 310 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | MWeto = | 44.05 | | | 0.14 | 0.3742 | 223 | 0.01 | 310 | MolVol = | 385.32 | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | ppmv/ft3 = | 1000000 | | | Run#2 | | | | | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | EtO Mass Flow = | 0.0000228 | lbs/min | | 0.14 | 0.3742 | 224 | 0.01 | 311 | EtO Mass Flow = | 0.001367 | lbs/hr | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 226 | 0.01 | 313 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 222 | 0.01 | 309 | | | | | 0.14 | 0.3742 | 222 | 0.01 | 309 | | | | | Run#3 | | | | | | | | | 0.14 | 0.3742 | 222 | 0.01 | 309 | | | | | 0.14 | 0.3742 | 223 | 0.01 | 310 | | | | | 0.14 | 0.3742 | 223 | 0.01 | 310 | | | | | 0.14 | 0.3742 | 223 | 0.01 | 310 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 223 | 0.01 | 310 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 225 | 0.01 | 312 | | | | | 0.14 | 0.3742 | 224 | 0.01 | 311 | | | | | Average = | | | | | | | | | 0.14 | 0.3742 | 224.1 | 0.0100 | 311.1 | | | | 684 degR #### **APPENDIX E** **Gas Certifications** Single-Certified Calibration Standard Phone: 909-887-2571 Fax: 909-887-0549 # CERTIFICATE OF ACCURACY: Certified Working Class Calibration Standard Project No.: 02-57164-001 Item No.: 02020001310TCL P.O. No.: VBL - D KREMER Cylinder Number: CAL4448 Cylinder Size: CL Certification Date: 14Apr2014 Customer ECSI, INC PO BOX 848 SAN CLEMENTE, CA 92672 #### CERTIFIED CONCENTRATION Component Name ETHYLENE OXIDE NITROGEN Concentration (Moles) (+/-96) PPM 1.10 BALANCE 5 Accuracy TRACEABILITY Traceable To APPROVED BY: Scott Reference Standard DATE: 4-14-14 Page 1 of 2 Single-Certified Calibration Standard Phone: 909-887-2571 Fax: 909-887-0549 ## CERTIFICATE OF ACCURACY: Certified Working Class Calibration Standard Product Information Project No.: 02-57164-003 Item No.: 02020001320TCL P.O. No.: VBL - D KREMER Cylinder Number: CLM003232 Cylinder Size: CL Certification Date: 14Apr2014 Customer ECSI, INC. PO BOX 848 SAN CLEMENTE, CA 92672 CERTIFIED CONCENTRATION Component Name ETHYLENE OXIDE NITROGEN Concentration (Moles) > PPM 10.1 BALANCE Accuracy (+/-%) 5 TRACEABILITY Traceable To Scott Reference Standard | | 1 1 7 | | | |--------------|-------|-------|---------| | APPROVED BY. | J-1 | DATE: | 4-14-14 | | | MT | | | Page 1 of 2 #### Single-Certified Calibration Standard Phone: 909-887-2571 Fax: 909-887-0549 ### CERTIFICATE OF ACCURACY: Certified Working Class Calibration Standard Project No.: 02-57164-004 Item No.: 02020001330TCL P.O. No.: VBL - D. KREMER Cylinder Number: CLM011385 Cylinder Size: CL Certification Date: 14Apr2014 Customer ECSI, INC PO BOX 848 SAN CLEMENTE, CA 92672 #### CERTIFIED CONCENTRATION Component Name ETHYLENE OXIDE NITROGEN Concentration (Moles) 100. BALANCE Accuracy (+1-%) 5 #### TRACEABILITY Traceable To Scott Reference Standard APPROVED BY: DATE: 4-14-14 Page 1 of 2 Single-Certified Calibration Standard Phone: 909 887 2571 Fax: 909-887-0649 #### CERTIFICATE OF ACCURACY: Certified Working Class Calibration Standard Product Information Project No.: 02-57164-005 Item No.: 02020001340TCL P.O. No.: VBL - D. KREMER Cylinder Number: CLM002810 Cylinder Size: CL Certification Date: 14Apr2014 Customer ECSI, INC PO BOX 848 SAN CLEMENTE, CA 92672 CERTIFIED CONCENTRATION Component Name ETHYLENE OXIDE NITROGEN Concentration (Moles) 1.000. PPM BALANCE (+1-%) 5 Accuracy TRACEABILITY Traceable To Scott Reference Standard APPROVED BY: DATE: 4-14-14 Page 1 of 2 Single-Certified Calibration Standard Phone: 909-887-2571 Fax: 909-887-0549 ## CERTIFICATE OF ACCURACY: Certified Working Class Calibration Standard Product Information Project No.: 02-57164-006 item No.: 02020001340TCL P.O. No.: VBL - D. KREMER Cylinder Number: CLM005787 Cylinder Size: CL Certification Date: 14Apr2014 Customer ECSI, INC PO BOX 848 SAN CLEMENTE, CA 92672 CERTIFIED CONCENTRATION Component Name ETHYLENE OXIDE Concentration (Moles) 10,080. PPM BALANCE Accuracy (+/-96) TRACEABILITY Traceable To Scott Reference Standard DATE: 4-14-14 1 of 2 Page #### CERTIFICATE OF ANALYSIS Customer Name: Stock or Analyzer Tag Number: Customer Reference: MESA Reference: Date of Certification: Recommended Shelf Life: ECSi, Inc. NA Verbal- Dan 104448 4 15 2014 2 Years Cylinder Number: Product Class: Cylinder - Contents': Cylinder-CGA: Analysis Method: Preparation Method: SA25925 Certified Standard 28 CT at 2000 PSI A006-HP-BR 330 GC-ICD FID Gravimetric Component Ethylene Oxide Nitrogen Requested Concentration2 50 ppm Balance Reported Concentration^{2,3} > 48.8 ppm Balance Authorized Signature: The fill pressure shown on the CCA's as originally quoted. The fill pressure measured by the customer may defer from the fill pressure originally qui sed due to temperature officers, compressibility of the individual components when blended together in the extender games assurantly of naturalism at content softpine before shapping as a result of samples withdrawn for laboratory (8) necessary to govern product quality I aless otherwise stated
concentrations are given in malar units. Vapor pressure mayor me blended at a sufficiently low pressure so as to eliminate phase separation under most low temperature conditions encountered during transport of storage. However, it is generally recommended that eylinders containing vapor pressure restricted makes he placed on the slowr in a horizontal position and folled back and forth to improve homogeneity of the raw place. mixture before herry put into service. Singly treat is no Standards are prepared and analyzed using combinations of NOST (mecable weights, SRATs provided by NOST in intential gas standards that have been yet find for accorney using procedures published by the US-FPA. Pure cases are analysed in I certified for purity using monor component Analytical Cas Standards prepared according to the methods specified above. Holonics are calibrated to N331 and segghts covered by N331 and number \$22,236178.06. Reference Certification # < 163 W. \$30.5 and 5280. Entheration methods are in conformance with MIL-STD 45662A. MESA Specialty Gazes & Equipment 5619 Pendleton Avenue, Suite C + Santa Ana, California 92704 +1 5A 111 : 714-154-7102 ◆ 1 5A: 714-434-8006 ◆ 1 made mailse mesagascente On-line Catalog al. www.mesigas.com